Catalyst Marketing Plan – Draft


Catalyst Marketing Plan

21
Overview


21.1
Catalyst Teams


21.2
The Customer


21.3
The Pitch


31.4
The Catalyst Solution Bundle


31.5
Needed Features





Catalyst Marketing

1 Overview

This document is designed to cover all marketing related activity for Catalyst, eventually covering topics including the message, collateral and website, needed features, outreach and possibly fundraising.

1.1 Catalyst Teams

The Catalyst community effort includes several groups now: core (aka development), documentation and marketing. While marketing will drive the marketing efforts, agreement with the dev and doc teams are necessary because some marketing goals may require the various teams to align goals. Sometimes a feature will be needed for marketing purposes and will need to be incorporated into the development and documentation efforts. For this document the teams will be called dev, doc and mktg.

1.2 The Customer

We need to decide who the target customer is. In the past there has been some disagreement over this but it needs to be clarified before any marketing activity can begin in earnest. This document assumes that the target audience is anyone using any language that wants to build a dynamic web app. This includes PHP, Rails, and other non-Perl users.

This approach means that, if we are successful, there will be more newbies to Perl and Perl OO on #catalyst. The upside is that if we are successful, Perl 5 may get more corporate use and become popular again.

Alternatives include (a) MVC/OO framework users (b) all Perl users (c) only Perl users with a clue. Both of these are a much smaller target market than the proposed target that includes competing against PHP and Rails.

We need agreement from dev, doc and mktg.

1.3 The Pitch

To convince someone who is not even using Perl to use Catalyst we need to appeal to them in ways that aren’t language specific. Perl’s greatest strength is CPAN and Catalyst’s strength is flexibility so something like the following:

· “The Most Scalable and Flexible web framework backed by the largest open source library”

This is just a straw man to generate discussion. Catalyst has proof of this in the following deployed sites which is much more than any other framework can claim:

· Scalability: Vox with Alex rank 366

· Flexibility: EditGrid AJAX spreadsheet

· Corporate Approval: Dresdner Bank, Yahoo

· Biggest Library: 10,000+ modules on CPAN

From a technical perspective the ORM, DBIx::Class, seems to be Catalyst’s greatest strength wrt other frameworks. We need articles comparing DBIx::Class to ActiveRecord. ActiveRecord is weak in this area and has generated a lot of dissatisfaction so we just need to tell the truth. With DBIx::Class we may want to highlight sophisticated PosgreSQL and Oracle use.

1.4 The Catalyst Solution Bundle

Most people aren’t interested in frameworks by themselves, they are interested in a solution and Catalyst should talk about and package a solution. In the past, this solution was Task::Catalyst. While optional for experienced Catalyst users, there should be a recommended set of components and the Catalyst website should walk the talk wrt those components. Some issues:

· Can we regain control of Task::Catalyst?

· Are these the right components?

· It should include a recommended cache component

The Catalyst marketing message on the website will cover all the components in the bundle while mentioning these components can be exchanged.

1.5 Needed Features

From a marketing perspective, is Catalyst missing any key features? For a full solution the following may be needed:

· Ability to install easily for non-Perl users with no knowledge of CPAN. Should we allow apps to install a captive Catalyst into the MyApp/vendor directory?

· Integrated page cache that is easy to setup and works. Catalyst has as a number of cache modules but it would be nice if it would just work automatically. The Typo blog automatically creates a cache directory under MyApp/tmp/cache. Can we get Catalyst to do something similar?

· Documentation on writing tests for Cat apps. One big feature of frameworks is that they make you use better coding practices including writing tests. I think we need some recommendations and documentation on how to write common tests for Cat apps including using Test::Class, Test::MockObject, Test::WWW::Selenium::Catalyst, Test::WWW::Mechanize::Catalyst and the like. Right now the way to learn how to create tests for a Cat App seems to be UTSL of existing tests and POD for Catalyst related test modules. This could be improved. What Perl test modules should be used and how should tests be created.

Built-in caching and testing seem to be big features for Rails. Does Catalyst need these? They don’t need to be done right away, but are these features consistent with the direction we want Catalyst to go?

	
	10/16/2006
	Page 4 of 4



